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Fitting a Simple Regression Model

Let’s create some artificial data that fit a simple linear
regression model. We’ll

make the X variable normal;
create an ε that is also normal and independent;
then create Y from the linear model equation
Y = b0 + b1X + ε

In the code below, I set b1 and b0 to 0.7 and 5, respectively.
> set .seed (12345) ## seed the random generator

> X ← rnorm(200)
> epsilon ← rnorm(200)
> b1 ← 0.7
> b0 ← 5

> Y ← b0 + b1 ∗ X + epsilon
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Fitting a Simple Regression Model

Displaying the scatterplot in R uses the plot command:
> plot (X,Y)
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Fitting a Simple Regression Model

Adding the best-fitting straight line is easy. We obtain a linear
model “fit object” with the command:
> fit.1 ← lm(Y˜X)
> fit.1

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) X

5.0796 0.7337

These fitted coefficients have a sampling error connected to
them, of course. We know that the population values are 0.7
and 5, while the sample estimates here are 0.73 and 5.08.
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Fitting a Simple Regression Model

Adding the best fitting straight line is very simple in R, if
you’ve saved your fit object. You just type:
> plot (X,Y)
> # make the fit line dotted and red

> # lty=2 dotted

> abline (fit.1 ,lty=2, col = ' red ' )
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abline is a versatile function that plots lines with a given slope
and intercept. It also operates directly on a fit object.
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Examining the Residual Plot

Recall that the residuals should have a conditional mean of zero
for any conditional value of X , and the residual variance should
not vary as a function of X .

A quick visual examination with a residual plot can reveal
major departures from these assumptions.

Computing residuals is really simple in R. You simply apply the
residuals function to the fit object.
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Examining the Residual Plot

> plot (X, res iduals (fit.1))
> #add a red dotted line at zero

> #to aid evaluation

> abline (0,0,lty=2, col = ' red ' )
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Examining the Residual Plot

Things look just as they should.

The residuals are centered on the zero line, and show about the
same level of variability as we move across the zero line from
left to right.
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Diagnosing Problems from a Residual Plot

Let’s create data that systematically deviate from the linear
regression model.
> set .seed (12345) ## seed the random generator

> X ← rnorm(200)
> epsilon ← rnorm(200)
> b1 ← .6
> b0 ← 2

> Y ← exp(b0 + b1 ∗ X) + epsilon

Multilevel Diagnostics and Transformations



Fitting a Model in R
Examining Residuals
Diagnosing Problems

Measures of Model Fit

Diagnosing Problems from a Residual Plot

Plotting the data, we see a nonlinear relation. I’ve added a blue
line showing the conditional mean of Y given X . You can see
why, when you fit a straight line to these data, the residuals will
have a positive mean at low values of X , a negative mean in the
middle values, and a positive mean at high values of X .
> plot (X,Y)
> fit.2 ← lm(Y˜X)
> abline (fit.2 ,lty=2, col = ' red ' )
> curve(exp(b1∗x + b0),add=TRUE , col = ' blue ' )
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Diagnosing Problems from a Residual Plot

This shows up very clearly in the residual plot
> plot (X, res iduals (fit.2))
> abline (0,0,lty=2, col = ' red ' )
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Diagnosing Nonlinearity

In this case, the solution is straightforward (especially since we
know the precise rule that generated the data!).

Since the systematic part of the graph is an exponential
function of a linear function of X , the log of Y should have a
linear relationship with X . So simply transforming Y should
make a linear regression work much better.
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Diagnosing Nonlinearity

> log.Y ← log(Y)
> fit.3 ← lm(log.Y ˜ X)
> plot (X,log.Y)
> abline (fit.3 ,lty=2, col = ' red ' )
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Diagnosing Nonlinearity

> plot (X, res iduals (fit.3))
> abline (0,0,lty=3, col = ' red ' )
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The residual standard deviation σ̂

R2

The multiple correlation R for a linear regression model is the
correlation between the predicted scores ŷ and the actual
criterion scores y .

Statistical texts have a long tradition of using R to stand for
both the population and sample multiple correlation. I’m not
sure if it would help for me to depart from this tradition.

Consequently, I’ll refer loosely to “the population R2” or, when
confusion is more likely, R2

pop . Some authors will use ρ2, and
you’ll have to stay alert for these notational variations.
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R2

The residual standard deviation σ̂

R2

Denoting the variance of the y ’s by σ2
y , the variance of the

predicted scores by σ2
ŷ , and the variance of the residuals by σ2,

we can show that

R2
pop =

σ2
ŷ

σ2
y

(1)

That is, R2
pop is the proportion of the variance of the criterion

that is predictable from the linear regression equation.
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R2

The residual standard deviation σ̂

R2

As a simple consequence of the geometry of linear regression,
the predicted and residual scores in linear regression are always
precisely uncorrelated, and consequently,

σ2
y = σ2

ŷ + σ2
ε (2)

Consequently, we may also write

R2
pop = 1− σ2

ε

σ2
y

(3)

or, equivalently

R2
pop =

σ2
y − σ2

ŷ

σ2
y

(4)

If the regression equation is of no use at all, the residual
variance is simply σ2

y . So another way of describing R2 is “the
proportion of potential error variance saved by using the
regression equation.”
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂

The conditional distribution of y given x = a is the mean of the
distribution of y for those pairs of values for which x takes on
the value a. Conditional distributions are of fundamental
importance in statistics, because many distributions are
interpretable primarily when conditionalized.

Consider, for example, height and weight. We are used to
interpreting weight conditionalized on a value of height. If a
person weighs 210 pounds, our interpretation is quite different
for a height of 56 inches than for a height of 84 inches.
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂

A key result in linear regression theory is that conditional
means follow the regression line. That is, the conditional mean
of the distribution of y given x = a is normal, with mean ŷ
evaluated at a. Moreover, the standard deviation of the
conditional distribution is σε.

Consequently, σε tells us how the observations in the
conditional distribution are spread out around the conditional
mean, and is a direct measure of how closely we can predict a
value of y from the value of x .
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂

For example, suppose the regression line relating weight to
height is y = 6x − 270, and σε = 20. What is the conditional
distribution of y given x = 75?

Let’s write an R function to compute ŷ
> yhat ← function(a){6∗a-270}
> yhat (75)

[1] 180

The conditional mean is 180. The conditional distribution has a
standard deviation of 20.
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂

The preceding result tells us that men who are 75 inches tall
show a distribution of weights. This distribution is centered on
180, but also shows considerable variation around it.

How likely is a 75 inch tall man’s weight to be within ±20
pounds of the predicted value 180?

From our basic knowledge of the normal curve, we know that
values within ±1 standard deviation of the mean occur about
68% of the time. We can also see that men who are 75 inches
tall are above 200 pounds in weight about 16% of the time.
> 1-pnorm (200 ,180 ,20)

[1] 0.1586553
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

Gelman and Hill make the point that σ̂ can convey information
different from R2. Suppose we look at the relationship between
height and weight for a large group of men, and assume that, in
the general population, weights have a mean of 150 and a
standard deviation of 25, and heights have a mean of 70 and a
standard deviation of 2.5, and, moreover, heights and weights
correlate 0.60. Then R2 = .36, and σε = 20.
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

We can create data in R to simulate this situation:
> set .seed (12345)
> height ← rnorm(1000 ,70 ,2.5)
> error ← rnorm(1000 ,0 ,20)
> weight ← 6 ∗ height -270 + error
> height.data ← data.frame(height ,weight)
> attach(height.data)

The following object(s) are masked _by_ .GlobalEnv :

height weight
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R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

Here is the output:
> fit ← lm(weight˜height)
> summary(fit)

Call:
lm(formula = weight ~ height)

Residuals:
Min 1Q Median 3Q Max

-64.63010 -13.95044 0.02194 14.31202 67.15312

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -292.5670 17.9244 -16.32 <2e-16 ***
height 6.3132 0.2555 24.71 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.16 on 998 degrees of freedom
Multiple R-squared: 0.3796, Adjusted R-squared: 0.379
F-statistic: 610.6 on 1 and 998 DF, p-value: < 2.2e-16
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Diagnosing Problems

Measures of Model Fit

R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

Here is the plot:
> plot (height ,weight)
> abline (fit ,lty=2, col = ' red ' )
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Fitting a Model in R
Examining Residuals
Diagnosing Problems

Measures of Model Fit

R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

We can restrict ourselves to a narrower range of heights
> restricted.range ← height.data[which( (height > 68) & (height < 72)),]
> fit ← lm(restricted.range$weight ˜ restricted.range$height)
> summary(fit)

Call:
lm(formula = restricted.range$weight ~ restricted.range$height)

Residuals:
Min 1Q Median 3Q Max

-60.7019 -14.2128 0.2260 14.2996 61.6950

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -273.6950 52.9370 -5.170 3.22e-07 ***
restricted.range$height 6.0431 0.7556 7.998 6.82e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.3 on 584 degrees of freedom
Multiple R-squared: 0.09872, Adjusted R-squared: 0.09718
F-statistic: 63.97 on 1 and 584 DF, p-value: 6.816e-15

Multilevel Diagnostics and Transformations



Fitting a Model in R
Examining Residuals
Diagnosing Problems

Measures of Model Fit

R2

The residual standard deviation σ̂

The residual standard deviation σ̂ vs. R2

Here is the picture
> plot (restricted.range$height ,restricted.range$weight)
> abline (fit ,lty=2, col = ' red ' )

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

68 69 70 71 72

10
0

12
0

14
0

16
0

18
0

20
0

restricted.range$height

re
st

ric
te

d.
ra

ng
e$

w
ei

gh
t

Multilevel Diagnostics and Transformations


	Fitting a Model in R
	Examining Residuals
	Diagnosing Problems
	Measures of Model Fit
	R2
	The residual standard deviation 


